Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 326
Filtrar
1.
Microbes Infect ; : 105351, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38724000

RESUMO

Mycobacterium abscessus (MAB), a non-tuberculous mycobacterium (NTM), causes chronic pulmonary inflammation in humans. The NLRP3 inflammasome is a multi-protein complex that triggers IL-1ß maturation and pyroptosis through the cleavage of caspase-1. In this study, we investigated the roles of NLRP3 and IL-1ß in the host's defense against MAB. The IL-1ß production by MAB was completely abolished in NLRP3, but not NLRC4, deficient macrophages. The NLRP3 inflammasome components, which are ASC and caspase-1 were also found to be essential for IL-1ß production in response to MAB. NLRP3 and IL-1ß deficiency did not affect the intracellular growth of MAB in macrophages, and the bacterial burden in lungs of NLRP3- and IL-1ß-deficient mice was also comparable to the burden observed in WT mice. In contrast, IL-1ß deficiency ameliorated lung pathology in MAB-infected mice. Notably, the lung homogenates of IL-1ß-deficient mice had reduced levels of IL-17, but not IFN-γ and IL-4 when compared with WT counterparts. Furthermore, in vitro co-culture analysis showed that IL-1ß signaling was essential for IL-17 production in response to MAB. Finally, we observed that the anti-IL-17 antibody administration moderately mitigated MAB-induced lung pathology. These findings indicated that IL-1ß production contribute to MAB-induced lung pathology via the elevation of IL-17 production.

2.
Inflammopharmacology ; 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38568399

RESUMO

Inflammation can be triggered by any factor. The primary pathological manifestations can be summarized as the deterioration, exudation, and proliferation of local tissues, which can cause systemic damage in severe cases. Inflammatory lesions are primarily localized but may interact with body systems to cause provocative storms, parenchymal organ lesions, vascular and central nervous system necrosis, and other pathologic responses. Tetrandrine (TET) is a bisbenzylquinoline alkaloid extracted from the traditional Chinese herbal medicine Stephania tetrandra, which has been shown to have significant efficacy in inflammatory conditions such as rheumatoid arthritis, hepatitis, nephritis, etc., through NF-κB, MAPK, ERK, and STAT3 signaling pathways. TET can regulate the body's imbalanced metabolic pathways, reverse the inflammatory process, reduce other pathological damage caused by inflammation, and prevent the vicious cycle. More importantly, TET does not disrupt body's normal immune function while clearing the body's inflammatory state. Therefore, it is necessary to pay attention to its dosage and duration during treatment to avoid unexpected side effects caused by a long half-life. In summary, TET has a promising future in treating inflammatory diseases. The author reviews current therapeutic studies of TET in inflammatory conditions to provide some ideas for subsequent anti-inflammatory studies of TET.

3.
Appl Environ Microbiol ; : e0217423, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38656183

RESUMO

The gut microbiota of poultry is influenced by a variety of factors, including feed, drinking water, airborne dust, and footpads, among others. Gut microbiota can affect the immune reaction and inflammation in the lungs. To investigate the effect of gut microbiota variation on lung inflammation induced by PM2.5 (fine particulate matter) in broilers, 36 Arbor Acres (AA) broilers were randomly assigned to three groups: control group (CON), PM2.5 exposure group (PM), and PM2.5 exposure plus oral antibiotics group (PMA). We used non-absorbable antibiotics (ABX: neomycin and amikacin) to modify the microbiota composition in the PMA group. The intervention was conducted from the 18th to the 28th day of age. Broilers in the PM and PMA groups were exposed to PM by a systemic exposure method from 21 to 28 days old, and the concentration of PM2.5 was controlled at 2 mg/m3. At 28 days old, the lung injury score, relative mRNA expression of inflammatory factors, T-cell differentiation, and dendritic cell function were significantly increased in the PM group compared to the CON group, and those of the PMA group were significantly decreased compared to the PM group. There were significant differences in both α and ß diversity of cecal microbiota among these three groups. Numerous bacterial genera showed significant differences in relative abundance among the three groups. In conclusion, gut microbiota could affect PM2.5-induced lung inflammation in broilers by adjusting the capacity of antigen-presenting cells to activate T-cell differentiation. IMPORTANCE: Gut microbes can influence the development of lung inflammation, and fine particulate matter collected from broiler houses can lead to lung inflammation in broilers. In this study, we explored the effect of gut microbes modified by intestinal non-absorbable antibiotics on particulate matter-induced lung inflammation. The results showed that modification in the composition of gut microbiota could alleviate lung inflammation by attenuating the ability of dendritic cells to stimulate T-cell differentiation, which provides a new way to protect lung health in poultry farms.

4.
Environ Sci Technol ; 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38676641

RESUMO

Antimicrobial nanomaterials frequently induce inflammatory reactions within lung tissues and prompt apoptosis in lung cells, yielding a paradox due to the inherent anti-inflammatory character of apoptosis. This paradox accentuates the elusive nature of the signaling cascade underlying nanoparticle (NP)-induced pulmonary inflammation. In this study, we unveil the pivotal role of nano-microflora interactions, serving as the crucial instigator in the signaling axis of NP-induced lung inflammation. Employing pulmonary microflora-deficient mice, we provide compelling evidence that a representative antimicrobial nanomaterial, silver (Ag) NPs, triggers substantial motility impairment, disrupts quorum sensing, and incites DNA leakage from pulmonary microflora. Subsequently, the liberated DNA molecules recruit caspase-1, precipitating the release of proinflammatory cytokines and activating N-terminal gasdermin D (GSDMD) to initiate pyroptosis in macrophages. This pyroptotic cascade culminates in the emergence of severe pulmonary inflammation. Our exploration establishes a comprehensive mechanistic axis that interlinks the antimicrobial activity of Ag NPs, perturbations in pulmonary microflora, bacterial DNA release, macrophage pyroptosis, and consequent lung inflammation, which helps to gain an in-depth understanding of the toxic effects triggered by environmental NPs.

5.
Int J Biol Macromol ; 267(Pt 1): 131386, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38582458

RESUMO

Verteporfin (VER), a photosensitizer used in macular degeneration therapy, has shown promise in controlling macrophage polarization and alleviating inflammation in acute lung injury (ALI)/acute respiratory distress syndrome (ARDS). However, its hydrophobicity, limited bioavailability, and side effects hinder its therapeutic potential. In this study, we aimed to enhance the therapeutic potential of VER through pulmonary nebulized drug delivery for ALI/ARDS treatment. We combined hydrophilic hyaluronic acid (HA) with an oil-in-water system containing a poly(lactic acid-co-glycolic acid) (PLGA) copolymer of VER to synthesize HA@PLGA-VER (PHV) nanoparticles with favorable surface characteristics to improve the bioavailability and targeting ability of VER. PHV possesses suitable electrical properties, a narrow size distribution (approximately 200 nm), and favorable stability. In vitro and in vivo studies demonstrated the excellent biocompatibility, safety, and anti-inflammatory responses of the PHV by suppressing M1 macrophage polarization while inducing M2 polarization. The in vivo experiments indicated that the treatment with aerosolized nano-VER (PHV) allowed more drugs to accumulate and penetrate into the lungs, improved the pulmonary function and attenuated lung injury, and mortality of ALI mice, achieving improved therapeutic outcomes. These findings highlight the potential of PHV as a promising delivery system via nebulization for enhancing the therapeutic effects of VER in ALI/ARDS.


Assuntos
Lesão Pulmonar Aguda , Portadores de Fármacos , Ácido Hialurônico , Nanopartículas , Verteporfina , Lesão Pulmonar Aguda/tratamento farmacológico , Ácido Hialurônico/química , Animais , Camundongos , Verteporfina/administração & dosagem , Verteporfina/farmacologia , Verteporfina/uso terapêutico , Nanopartículas/química , Portadores de Fármacos/química , Células RAW 264.7 , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Aerossóis , Masculino , Sistemas de Liberação de Medicamentos , Administração por Inalação
6.
Heliyon ; 10(7): e28828, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38601631

RESUMO

Objective: The aim of this study is to investigate the correlation between periodontal disease and chronic obstructive pulmonary disease (COPD) from the perspective of gene regulation, as well as the inflammatory pathways involved. Methods: Forty C57BL/6 mice were randomly divided into four groups: control group, chronic periodontitis (CP) group, COPD group, and CP&COPD group. Lung tissue samples were selected for messenger ribonucleic acid (mRNA) sequencing analysis, and differential genes were screened out. Gene enrichment analysis was carried out, and then crosstalk gene enrichment analysis was conducted to explore the pathogenesis related to periodontal disease and COPD. Results: Results of enrichment analysis showed that the differentially expressed genes (DEGs) in the CP group were concentrated in response to bacterial origin molecules. The DEGs in the COPD group gene were enriched in positive regulation of B cell activation. The DEGs in the CP&COPD group were concentrated in neutrophil extravasation and neutrophil migration. The mice in the three experimental groups had 19 crosstalk genes, five of which were key genes. Conclusions: Lcn2, S100a8, S100a9, Irg1, Clec4d are potential crossover genes of periodontal disease and COPD. Lcn2, S100a8, S100a9 are correlated with neutrophils in both diseases. Irg1 and Clec4d may bind to receptors on the surface of lymphocytes to produce cytokines and activate inflammatory pathways, this requires further research.

7.
Cytokine ; 178: 156563, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38479048

RESUMO

Neutrophilic pulmonary inflammation in asthmatics substantially exacerbates the severity of the disease leading to resistance to conventional corticosteroid therapy. Many studies established the involvement of Th1- and Th17-cells and cytokines produced by them (IFNg, IL-17A, IL-17F etc.) in neutrophilic pulmonary inflammation. Recent studies revealed that IL-4 - a Th2-cytokine regulates neutrophil effector functions and migration. It was showed that IL-4 substantially reduces neutrophilic inflammation of the skin in a mouse model of cutaneous bacterial infection and blood neutrophilia in a mouse model systemic bacterial infection. However, there are no data available regarding the influence of IL-4 on non-infectious pulmonary inflammation. In the current study we investigated the effects of IL-4 in a previously developed mouse model of neutrophilic bronchial asthma. We showed that systemic administration of IL-4 significantly restricts neutrophilic inflammation of the respiratory tract probably through the suppression of Th1-/Th17-immune responses and downregulation of CXCR2. Additionally, pulmonary neutrophilic inflammation could be alleviated by IL-4-dependant polarization of N2 neutrophils and M2 macrophages, expressing anti-inflammatory TGFß. Considering these, IL-4 might be used for reduction of exaggerated pulmonary neutrophilic inflammation and overcoming corticosteroid insensitivity of asthma patients.


Assuntos
Asma , Infecções Bacterianas , Pneumonia , Humanos , Animais , Camundongos , Interleucina-4/farmacologia , Neutrófilos , Citocinas , Inflamação , Suscetibilidade a Doenças , Corticosteroides/farmacologia
8.
Front Physiol ; 15: 1345488, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38444763

RESUMO

Acute respiratory distress syndrome (ARDS) is characterized by an exacerbated inflammatory response, severe damage to the alveolar-capillary barrier and a secondary infiltration of protein-rich fluid into the airspaces, ultimately leading to respiratory failure. Resolution of ARDS depends on the ability of the alveolar epithelium to reabsorb lung fluid through active transepithelial ion transport, to control the inflammatory response, and to restore a cohesive and functional epithelium through effective repair processes. Interestingly, several lines of evidence have demonstrated the important role of potassium (K+) channels in the regulation of epithelial repair processes. Furthermore, these channels have previously been shown to be involved in sodium/fluid absorption across alveolar epithelial cells, and we have recently demonstrated the contribution of KvLQT1 channels to the resolution of thiourea-induced pulmonary edema in vivo. The aim of our study was to investigate the role of the KCNQ1 pore-forming subunit of KvLQT1 channels in the outcome of ARDS parameters in a model of acute lung injury (ALI). We used a molecular approach with KvLQT1-KO mice challenged with bleomycin, a well-established ALI model that mimics the key features of the exudative phase of ARDS on day 7. Our data showed that KvLQT1 deletion exacerbated the negative outcome of bleomycin on lung function (resistance, elastance and compliance). An alteration in the profile of infiltrating immune cells was also observed in KvLQT1-KO mice while histological analysis showed less interstitial and/or alveolar inflammatory response induced by bleomycin in KvLQT1-KO mice. Finally, a reduced repair rate of KvLQT1-KO alveolar cells after injury was observed. This work highlights the complex contribution of KvLQT1 in the development and resolution of ARDS parameters in a model of ALI.

9.
Inflammopharmacology ; 32(2): 1059-1076, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38310155

RESUMO

Pseudomonas aeruginosa is an opportunistic pathogen that commonly causes infections in immunocompromised individuals with significant morbidity and mortality. Quercetin is a natural flavonoid abundantly present in fruits and vegetables, exerting potent anti-inflammatory effects in treatment of various diseases. However, the molecular mechanisms of quercetin in treatment of P. aeruginosa-induced acute lung inflammation are unclear. In this study, we exploited network pharmacology- and molecular docking-based approach to explore the potential mechanisms of quercetin against P. aeruginosa pneumonia, which was further validated via in vivo and in vitro experiments. The in vivo experiments demonstrated that quercetin alleviated the P. aeruginosa-induced lung injury by diminishing neutrophil infiltration and production of proinflammatory cytokines (IL-1ß, IL-6, and TNF), which was associated with decreased mortality. Moreover, the quercetin-treated mice displayed decreased phosphorylation levels of PI3K, AKT, IκBα, and NF-κB p65 in lung tissues compared to non-drug-treated mice. Similarly, the in vitro study showed that the phosphorylation of these regulatory proteins and production of the proinflammatory cytokines were impaired in the quercetin-pretreated macrophages upon P. aeruginosa infection. Altogether, this study suggested that quercetin reduced the P. aeruginosa-induced acute lung inflammation by suppressing PI3K/AKT/NF-κB signaling pathway.


Assuntos
NF-kappa B , Pneumonia , Quercetina , Animais , Camundongos , Citocinas/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Lipopolissacarídeos/farmacologia , Simulação de Acoplamento Molecular , NF-kappa B/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Pneumonia/tratamento farmacológico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Pseudomonas aeruginosa/metabolismo , Quercetina/farmacologia , Transdução de Sinais
10.
Int J Med Sci ; 21(1): 107-122, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38164360

RESUMO

NF-κB activation is pivotal for the excess inflammation causing the critical condition and mortality of respiratory viral infection patients. This study was aimed to evaluate the effect of a banana plant extract (BPE) on suppressing NF-κB activity and acute lung inflammatory responses in mice induced by a synthetic double-stranded RNA viral mimetic, polyinosinic-polycytidylic acid (poly (I:C)). The inflammatory responses were analyzed by immunohistochemistry and HE stains and ELISA. The NF-κB activities were detected by immunohistochemistry in vivo and immunofluorescence and Western blot in vitro. Results showed that BPE significantly decreased influx of immune cells (neutrophils, lymphocytes, and total WBC), markedly suppressed the elevation of pro-inflammatory cytokines and chemokines (IL-6, RANTES, IFN-γ, MCP-1, keratinocyte-derived chemokine, and IL-17), and restored the diminished anti-inflammatory IL-10 in the bronchoalveolar lavage fluid (BALF) of poly (I:C)-stimulated mice. Accordingly, HE staining revealed that BPE treatment alleviated poly (I:C)-induced inflammatory cell infiltration and histopathologic changes in mice lungs. Moreover, immunohistochemical analysis showed that BPE reduced the pulmonary IL-6, CD11b (macrophage marker), and nuclear NF-κB p65 staining intensities, whilst restored that of IL-10 in poly (I:C)-stimulated mice. In vitro, BPE antagonized poly(I:C)-induced elevation of IL-6, nitric oxide, reactive oxygen species, NF-κB p65 signaling, and transient activation of p38 MAPK in human lung epithelial-like A549 cells. Taken together, BPE ameliorated viral mimic poly(I:C)-induced acute pulmonary inflammation in mice, evidenced by reduced inflammatory cell infiltration and regulation of both pro- and anti-inflammatory cytokines. The mechanism of action might closely associate with NF-κB signaling inhibition.


Assuntos
Musa , Pneumonia , Camundongos , Humanos , Animais , NF-kappa B , Poli I-C/farmacologia , Poli I-C/uso terapêutico , Interleucina-10 , Interleucina-6 , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Citocinas , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Quimiocinas , Anti-Inflamatórios/uso terapêutico
11.
Cytokine ; 173: 156419, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37976700

RESUMO

Coal dust is the main occupational hazard factor during coal mining operations. This study aimed to investigate the role of macrophage polarization and its molecular regulatory network in lung inflammation and fibrosis in Sprague-Dawley rats caused by coal dust exposure. Based on the key exposure parameters (exposure route, dose and duration) of the real working environment of coal miners, the dynamic inhalation exposure method was employed, and a control group and three coal dust groups (4, 10 and 25 mg/m3) were set up. Lung function was measured after 30, 60 and 90 days of coal dust exposure. Meanwhile, the serum, lung tissue and bronchoalveolar lavage fluid were collected after anesthesia for downstream experiments (histopathological analysis, RT-qPCR, ELISA, etc.). The results showed that coal dust exposure caused stunted growth, increased lung organ coefficient and decreased lung function in rats. The expression level of the M1 macrophage marker iNOS was significantly upregulated in the early stage of exposure and was accompanied by higher expression of the inflammatory cytokines TNF-α, IL-1ß, IL-6 and the chemokines IL-8, CCL2 and CCL5, with the most significant trend of CCL5 mRNA in lung tissues. Expression of the M2 macrophage marker Arg1 was significantly upregulated in the mid to late stages of coal dust exposure and was accompanied by higher expression of the anti-inflammatory cytokines IL-10 and TGF-ß. In conclusion, macrophage polarization and its molecular regulatory network (especially CCL5) play an important role in lung inflammation and fibrosis in SD rats exposed to coal dust by dynamic inhalation.


Assuntos
Exposição por Inalação , Pneumonia , Ratos , Animais , Ratos Sprague-Dawley , Exposição por Inalação/efeitos adversos , Pneumonia/induzido quimicamente , Fibrose , Poeira , Citocinas/metabolismo , Macrófagos/metabolismo , Carvão Mineral
12.
Comput Biol Med ; 169: 107905, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38159398

RESUMO

OBJECT: To obtain Pulmonary Inflammation Index scores from imaging chest CT and combine it with clinical correlates of viral pneumonia to predict the risk and severity of viral pneumonia using a computer learning model. METHODS: All patients with suspected viral pneumonia on CT examination admitted to The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University from December 2022 to March 2023 were retrospectively selected. The respiratory viruses were monitored by RT-PCR and categorized into patients with viral pneumonia and those with non-viral pneumonia. The extent of lung inflammation was quantified according to the Pulmonary Inflammation Index score (PII). Information on patient demographics, comorbidities, laboratory tests, pathogenetic testing, and radiological data were collected. Five machine learning models containing Random Forest(RF), Radial Basis Function Neural Network (RBFNN), Support Vector Machine (SVM), K Nearest Neighbour Algorithm (KNN), and Kernel Ridge Regression (KRR) were used to predict the risk of onset and severity of viral pneumonia based on the clinically relevant factors or PII. RESULTS: Among the five models, the SVM model performed best in ACC (76.75 %), SN (73.99 %), and F1 (72.42 %) and achieved a better area under the receiver operating characteristic curve (ROC) (0.8409) when predicting the risk of developing viral pneumonia. RF had the best overall classification accuracy in predicting the severity of viral pneumonia, especially in predicting pneumonia with a PII classification of grade I, the RF model achieved an accuracy of 98.89%. CONCLUSION: Machine learning models are valuable in assessing the risk of viral pneumonia. Meanwhile, machine learning models confirm the importance in predicting the severity of viral pneumonia through PII. The establishment of machine learning models for predicting the risk and severity of viral pneumonia promotes the further development of machine learning in the medical field.


Assuntos
Pneumonia Viral , Humanos , Estudos Retrospectivos , Algoritmos , Análise por Conglomerados , Aprendizado de Máquina
13.
J Inflamm Res ; 16: 5989-6001, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38088941

RESUMO

Background: Sepsis is initiated by the dysfunctional response of the host immune system to infection. Septic shock and acute lung injury (ALI) are the main etiology of death caused by sepsis. Glucocorticoids, which are commonly used in clinic to antagonize the inflammatory response of sepsis, may cause serious side effects. Isoforskolin (ISOF) from the plant Coleus forskohlii stimulates adenylyl cyclase, increases the cAMP level and inhibits inflammatory response. The aim of this study was to investigate the synergistic effect of ISOF with dexamethasone (DEX) to prevent and ameliorate septic inflammation. Methods: Lipopolysaccharide (LPS) of 30 and 5 mg/kg (iv.) was used to induce sepsis and ALI mice model respectively in vivo. BEAS-2B cells stimulated by LPS were applied as cell model in vitro. The cumulative survival of mice with LPS-induced sepsis and the histopathological changes of lungs in mice with acute lung injury were observed, and the secretion of pro-inflammatory cytokines was analyzed by ELISA. The expression of RGS2 in BEAS-2B cells was detected by immunoblotting assay and PCR. Results: In the sepsis mice model, ISOF (10 mg/kg) combined with DEX (10 mg/kg.) (ip.) pretreatment significantly increased mice survival rate from 33.3% to 58.3%, which was significantly higher than that of ISOF or DEX treated alone. In the ALI mice model, ISOF, DEX pretreatment alone and combined application attenuated pulmonary pathological changes in ALI mice. Furthermore, ISOF, DEX alone or combined administration decreased MPO, MDA, IL-6, and IL-8 levels, while significantly synergistic effects were observed in the combined treatment group compared with ISOF or DEX alone. In BEAS-2B cells, combined pretreatment with ISOF and DEX significantly decreased the expression of IL-8 and increased the expression of RGS2. Conclusion: The results indicated that ISOF in combination with DEX synergistically improves survival rate and attenuates ALI in mice model through anti-inflammatory and antioxidant effects.

14.
Virol J ; 20(1): 262, 2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-37957672

RESUMO

Influenza is an acute viral respiratory illness with high morbidity rates worldwide. Excessive pulmonary inflammation is the main characteristic of lethal influenza A virus (IAV) infections. Therapeutic options for managing influenza are limited to vaccines and some antiviral medications. Phillyrin is one of the major bioactive components of the Chinese herbal medicine Forsythia suspensa, which has the functions of sterilization, heat clearing and detoxification. In this work, the effect and mechanism of phillyrin on H1N1 influenza (PR8)-induced pneumonia were investigated. We reported that phillyrin (15 mg/kg) treatment after viral challenge significantly improved the weight loss, ameliorated pulmonary inflammation and inhibited the accumulation of multiple cytokines and chemokines in bronchoalveolar lavage fluid on 7 days post infection (dpi). In vitro, phillyrin suppressed influenza viral replication (Matrixprotein and nucleoprotein messenger RNA level) and reduced influenza virus-induced cytopathic effect (CPE). Furthermore,chemokine receptor CXCR2 was confirmed to be markedly inhibited by phillyrin. Surface plasmon resonance results reveal that phillyrin exhibits binding affinity to CXCR2, having a binding affinity constant (KD) value of 1.858e-5 M, suggesting that CXCR2 is a potential therapeutic target for phillyrin. Moreover, phillyrin inhibited the mRNA and protein expression levels of Caspase1, ASC and NLRP3 in the lungs of mice with H1N1-induced pneumonia.This study reveals that phillyrin ameliorates IAV-induced pulmonary inflammation by antagonizing CXCR2 and inhibiting NLRP3 inflammasome activation partly.


Assuntos
Infecções por Orthomyxoviridae , Pneumonia Viral , Animais , Camundongos , Inflamassomos/metabolismo , Vírus da Influenza A Subtipo H1N1 , Proteína 3 que Contém Domínio de Pirina da Família NLR , Pneumonia Viral/tratamento farmacológico , Infecções por Orthomyxoviridae/tratamento farmacológico
15.
Respir Res ; 24(1): 288, 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-37978525

RESUMO

BACKGROUND: We have reported a positive correlation between S100 calcium-binding protein (S100) A8/S100A9 and sepsis-induced lung damage before. However, limited knowledge exists concerning the biological role of S100A8/A9 in pulmonary vascular endothelial barrier dysfunction, as well as the diagnostic value of S100A8/A9 in sepsis. METHODS: Sepsis was induced in C57BL/6J mice and S100A9-knockout (KO) mice through the cecal ligation and puncture (CLP). Pulmonary vascular leakage was determined by measuring extravasated Evans blue (EB). Reverse transcription polymerase chain reaction and the histological score were used to evaluate inflammation and lung injury, respectively. Recombinant S100A8/A9 (rhS100A8/A9) was used to identify the effects of S100A8/A9 on endothelial barrier dysfunction in human umbilical vein endothelial cells (HUVECs). Additionally, the diagnostic value of S100A8/A9 in sepsis was assessed using receiver operating characteristic. RESULTS: S100A8/A9 expression was up-regulated in the lungs of CLP-operated mice. S100A9 KO significantly reversed CLP-induced hypothermia and hypotension, resulting in an improved survival rate. S100A9 KO also decreased the inflammatory response, EB leakage, and histological scores in the lungs of CLP-operated mice. Occludin and VE-cadherin expressions were decreased in the lungs of CLP-operated mice; However, S100A9 KO attenuated this decrease. Moreover, CLP-induced signal transducer and activator of transcription 3 (STAT3) and p38/extracellular signal-regulated kinase (ERK) signalling activation and apoptosis were mitigated by S100A9 KO in lungs. In addition, rhS100A8/A9 administration significantly decreased occludin and VE-cadherin expressions, increased the phosphorylated (p)-ERK/ERK, p-p38/p38, and B-cell leukaemia/lymphoma 2 protein (Bcl-2)-associated X protein/Bcl-2 ratios in HUVECs. CONCLUSION: The present study demonstrated S100A8/A9 aggravated sepsis-induced pulmonary inflammation, vascular permeability, and lung injury. This was achieved, at least partially, by activating the P38/STAT3/ERK signalling pathways. Moreover, S100A8/A9 showed the potential as a biomarker for sepsis diagnosis.


Assuntos
Lesão Pulmonar , Sepse , Camundongos , Animais , Humanos , Ocludina , Camundongos Endogâmicos C57BL , Calgranulina A/genética , Calgranulina A/metabolismo , Calgranulina B/genética , Pulmão/metabolismo , Camundongos Knockout , Células Endoteliais da Veia Umbilical Humana/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo
16.
Poult Sci ; 102(12): 103138, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37862871

RESUMO

The dysbiosis of lung microbiota and inflammatory factors play a crucial role in the occurrence of lipopolysaccharides (LPS)-induced lung injury. Recently, mogroside V (MGV) has received increasing attention due to its potential health benefits in pneumonia, but its complex mechanism needs further experimental elucidation. In this study, we established an LPS-induced chicken lung injury model to investigate the protective effect of MGV on LPS-induced acute lung injury in broiler and its related mechanisms. A total of 192 one-day-old white-finned broilers were randomly assigned into 4 groups with 6 replicates: 1) control group: basal diet (d 1-44), saline (d 43); 2) LPS group: basal diet (d 1-44), LPS (d 43); 3) MGV group: basal diet + 0.2% MGV (d 1-44), saline (d 43); 4) MGV-LPS group: basal diet + 0.2% MGV (d 1-44), LPS (d 43). The results showed that pathological examination showed that lung tissue inflammation infiltration was reduced after MGV treatment. In addition, MGV can promote the balance of Th17 and Treg cell cytokines, significantly inhibit the expression of proinflammatory cytokines (IL-1ß (P < 0.01), IL-6 (P < 0.001), IL-17F (P < 0.05)), and decrease immunosuppressive target expression (PD-L1 (P < 0.01), PD-1 (P < 0.001), RORα (P < 0.001)), activating the immune system. Furthermore, 16S rRNA sequencing analysis showed that MGV treatment could increase the abundance of beneficial bacteria in the lung and reduce the abundance of bacteria associated with inflammation. Generally, MGV intervention has a preventive effect on the pathological damage induced by lipopolysaccharides. Its mechanism is related to inhibiting the inflammatory response, regulating the Th17/Treg balance, and maintaining the stability of lung microbiota.


Assuntos
Lesão Pulmonar Aguda , Pneumonia , Animais , Lipopolissacarídeos/toxicidade , Galinhas/metabolismo , Linfócitos T Reguladores/metabolismo , RNA Ribossômico 16S , Pulmão/metabolismo , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/metabolismo , Lesão Pulmonar Aguda/patologia , Lesão Pulmonar Aguda/veterinária , Pneumonia/induzido quimicamente , Pneumonia/veterinária , Pneumonia/metabolismo , Inflamação/induzido quimicamente , Inflamação/veterinária , Citocinas/genética , Citocinas/metabolismo
17.
Antioxidants (Basel) ; 12(9)2023 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-37760047

RESUMO

This study investigated the ameliorating effect of the aqueous extract of Codium fragile on PM2.5-induced pulmonary dysfunction. The major compounds of Codium fragile were identified as palmitic acid, stearic acid, and oleamide using GC/MS2 and hexadecanamide, oleamide, and 13-docosenamide using UPLC-Q-TOF/MSE. Codium fragile improved pulmonary antioxidant system deficit by regulating SOD activities and reducing GSH levels and MDA contents. It suppressed pulmonary mitochondrial dysfunction by regulating ROS contents and mitochondrial membrane potential levels. It regulated the inflammatory protein levels of TLR4, MyD88, p-JNK, p-NF-κB, iNOS, Caspase-1, TNF-α, and IL-1ß. In addition, it improved the apoptotic protein expression of BCl-2, BAX, and Caspase-3 and attenuated the fibrous protein expression of TGF-ß1, p-Smad-2, p-Smad-3, MMP-1, and MMP-2. In conclusion, this study suggests that Codium fragile might be a potential material for functional food or pharmaceuticals to improve lung damage by regulating oxidative stress inflammation, cytotoxicity, and fibrosis via the TLR/TGF-ß1 signaling pathway.

18.
Molecules ; 28(18)2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37764389

RESUMO

Four previously undescribed terpenoid glucosides, including one sesquiterpenoid di-glucoside (1), two new iridoid glucosides (2, 3), and a new triterpenoid tri-glucoside (4), were isolated from a 70% ethanol extract of the root of Gentiana macrophylla (Gentianaceae), along with eight known terpenoids. Their structures were determined by spectroscopic techniques, including 1D, 2D NMR, and HRMS (ESI), as well as chemical methods. The absolute configuration of compound 1 was determined by quantum chemical calculation of its theoretical electronic circular dichroism (ECD) spectrum. The sugar moieties of all the new compounds were confirmed to be D-glucose by GC analysis after acid hydrolysis and acetylation. Anti-pulmonary inflammation activity of the iridoids were evaluated on a TNF-α induced inflammation model in A549 cells. Compound 2 could significantly alleviate the release of proinflammatory cytokines IL-1ß and IL-8 and increase the expression of anti-inflammatory cytokine IL-10.


Assuntos
Gentiana , Pneumonia , Humanos , Terpenos/farmacologia , Fator de Necrose Tumoral alfa , Glucosídeos/farmacologia , Células A549 , Citocinas , Extratos Vegetais/farmacologia
19.
Int J Biol Macromol ; 253(Pt 3): 126651, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37709227

RESUMO

Silicosis is a severe occupational lung disease caused by inhalation of silica particles. Unfortunately, there are currently limited treatment options available for silicosis. Recent advances have indicated that bone marrow mesenchymal stem cells (BMSCs) have a therapeutic effect on silicosis, but their efficacy and underlying mechanisms remain largely unknown. In this study, we focused on the early phase of silica-induced lung injury to investigate the therapeutic effect of BMSCs. Our findings demonstrated that BMSCs attenuated silica-induced acute pulmonary inflammation by inhibiting NLRP3 inflammasome pathways in lung macrophages. To further understand the mechanisms involved, we utilized RNA sequencing to analyze the transcriptomes of BMSCs co-cultured with silica-stimulated bone marrow-derived macrophages (BMDMs). The results clued tumor necrosis factor-stimulated gene 6 (TSG-6) might be a potentially key paracrine secretion factor released from BMSCs, which exerts a protective effect. Furthermore, the anti-inflammatory and inflammasome pathway inhibition effects of BMSCs were attenuated when TSG-6 expression was silenced, both in vivo and in vitro. Additionally, treatment with exogenous recombinant mouse TSG-6 (rmTSG-6) demonstrated similar effects to BMSCs in attenuating silica-induced inflammation. Overall, our findings suggested that BMSCs can regulate the activation of inflammasome in macrophages by secreting TSG-6, thereby protecting against silica-induced acute pulmonary inflammation both in vivo and in vitro.


Assuntos
Células-Tronco Mesenquimais , Pneumonia , Silicose , Camundongos , Animais , Pulmão , Dióxido de Silício/toxicidade , Dióxido de Silício/metabolismo , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Silicose/terapia , Silicose/metabolismo , Silicose/patologia , Pneumonia/metabolismo , Pneumonia/patologia , Macrófagos , Inflamação/patologia , Anti-Inflamatórios/farmacologia
20.
J Biochem Mol Toxicol ; 37(12): e23494, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37563788

RESUMO

Particulate matter (PM) 2.5 has long been regarded as a major risk factor of the respiratory system, which constitutes a threat to human health. Although the positive relationship between PM2.5 exposure and the development of respiratory diseases has been well established, limited studies investigate the intrinsic self-protection mechanisms against PM2.5-induced respiratory injuries. Excessive pulmonary inflammation served as a key pathogenic mechanism in PM2.5-induced airway dysfunction, and we have previously shown that PM2.5 induced the production of vascular endothelial growth factor A (VEGFA) in the bronchial epithelial cells, which subsequently led to pulmonary inflammatory responses. In the current study, we found that PM2.5 also concurrently induced the expression of the stress-responsive protein heme oxygenase-1 (HO-1) along with VEGFA in the bronchial epithelial cells both in vivo and in vitro. Importantly, knocking down of HO-1 expression significantly increased the synthesis and secretion of VEGFA; while overexpression of HO-1 showed the opposite effects, indicating that HO-1 induction can antagonize VEGFA production in the bronchial epithelial cells upon PM2.5 exposure. Mechanistically, HO-1 inhibited PM2.5-evoked VEGFA induction through modulating hypoxia-inducible factor 1 alpha (HIF-1α), which was the upstream transcriptional factor of VEGFA. More specifically, HO-1 could not only inhibit HIF-1α expression, but also suppress its transactivity. Taken together, our results suggested that HO-1 was an intrinsic protective factor against PM2.5-induced pulmonary VEGFA production with a mechanism relating to HIF-1α, thus providing a potential treatment strategy against PM2.5 triggered airway injuries.


Assuntos
Heme Oxigenase-1 , Fator A de Crescimento do Endotélio Vascular , Humanos , Heme Oxigenase-1/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Pulmão/metabolismo , Células Epiteliais/metabolismo , Material Particulado/toxicidade , Subunidade alfa do Fator 1 Induzível por Hipóxia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...